近期学术讲座
当前位置: 首页>近期学术讲座>正文
伦敦大学学院唐军旺教授、英国德蒙福特大学田原副教授讲座通知
澳门新永利官网:2018-07-03 16:15:42 点击量:

应能源与动力工程学院邀请,伦敦大学学院唐军旺教授、英国德蒙福特大学田原副教授将于2018年7月9日下午来校进行学术交流并做学术报告,欢迎各位师生参加。

报告地点:北二楼1410会议室

报告时间:2018年7月9日(周一)下午3:00

报告题目1:

Efficient strategies for solar fuel synthesis and Environmental purification as well as low carbon material manufacturing

(可再生能源和环境净化技术以及低炭技术制备功能材料)


Prof. Dr. Junwang Tang

Department of Chemical Engineering, University College London, UK, junwang.tang@ucl.ac.uk


My group works on a few forefront research areas including a microwave-intensified low carbon technology for advanced materials synthesis, H2 fuel production from water and CO2 conversion by solar energy, CH4 conversion and water treatment. This lecture will introduce our recent progress in three key themes.

1) 微波增强的低炭技术制备功能材料: Developing energy efficient, reproducible and high throughput synthetic approaches to functional materials manufacturing has gained increasing attention. Herein crystalline nanostructured metal and metal oxide have been engineered by a novel microwave intensified fluidic system. Microwave irradiation was found to direct the self-assembly of produced hematite subunits via selective heating and polarization of nanoparticles. In parallel, the novel technology could manufacture Au nanoparticles with mean particle of ~4 nm x ~8 nm after 90 second microwave irradiation (Referred to our papers, Green Chemistry, 2016,18 (10), 3057-3065; ACS Sustainable Chemistry & Engineering, 2016, 4 (12), 6435-6442)

2) 太阳能转化为化学能: Solar energy has the potential to meet the increasing global energy demands. Therefore solar energy conversion and storage, via water splitting and CO2 conversion has been attracting substantial interest over the last ten years. The current very moderate efficiency in the photochemical processes is contributed to both fast charge recombination and large bandgap of inorganic semiconductors (Referred to our paper, Chemical Society Reviews, 2017 DOI: 10.1039/c6cs00306k and Chemical Reviews, 2018, 118 (10), pp 5201–5241 and Materials Today, 2018)

Stimulated by our recent research outcomes on the charge dynamics in inorganic semiconductor photocatalysts, we developed novel material strategies for solar driven fuel synthesis by polymer photocatalysts. One is to mitigate the charge recombination by improving the degree of polymerization of a polymer e.g. C3N4. With respect to it, one successful example of pure water splitting in a suspensions solution under visible light has been demonstrated for the first time. The other strategy is to narrow the bandgap of carbon nitrides by bandgap engineering. The material prepared via an oxygen rich organic precursor has a dark color, resulting into an efficient H2 production from water by UV and visible, even IR light with a quantum yield (QY) of 10% at 420 nm, which is the first example of a polymer photocatalyst working in such long wavelength for H2 fuel production. (Referred to our papers, J. Am. Chem. Soc., 2008, 130(42) 13885-13891. J. Am. Chem. Soc., 2014, 136, 12568-12571. Angewandte Chemie International Edition, 2014, 53, 9240-9245. Energy Environ Sci, 2017, DOI: 10.1039/C7EE01109A, J. Am. Chem. Soc. 2017, 139 (14), 5216–5224. Angewandte Chemie International Edition, 2017, 10.1002/anie.201703372, Energy Environ Sci, 2018, 10.1039/C7EE02981K)

3) 光催化污水处理技术: To develop an efficient photocatalyst for catalytic environmental purification, still remains a big challenge, involving Material Science, Chemistry, Engineering and Physics. In particular there is not a cost effective way to deal with large volume of water contaminated by small amount of organic substance or large amount of contaminated water in suburban region (e.g. oil spill in Mexico Gulf and in China Bohai Sea). Inorganic photocatalysis using solar energy to mineralize organic contaminants in principal is the best solution to these issues and works in a cost effective way. The mechanism of the chemical process will be addressed in the talk and structured/junction materials development will be presented, resulting into nearly double activity of the benchmark photocatalyst P25. Furthermore, a facile method to synthesize these active photocatalysts will be discussed. (Referred to our papers: Angewandte Chemie-International Edition, 2004, 43(34), 4463-4466; New Journal of Chemistry, 2015, 39, 314-320; ChemCatChem 2015, 7 (11), 1659-1667, Chemical Society Reviews 2015, 44 (21), 7808-7828.)

唐军旺教授是RSC Fellow (皇家化学会会士),伦敦大学学院 (UCL)的料研究中心主任, 材料化学和工程材料主席教授, 太阳能和高级功能材料组负责人。目前为止在能源的有效利用, 太阳能的转化,甲烷的转化,二氧化碳的利用,微波流动法制备功能材料和水以及气体净化的研究方面共参加了2亿7千万人民币的项目。发表了超过120篇SCI文章。多发表在Chem. Review, Chem. Soc. Review, Materials Today, J. Am. Chem. Soc., Angew. Chem. Int. Ed., Energy Environ. Sci., Adv. Energy Mater., Adv. Healthcare Mater., Current Opinion in Chemical Engineering等化学和能源的顶级刊物上,总引用数超过8000次。同时有11项国际和英国专利(其中一项被授予美,德,日和中国四个国家专利)。他是Journal of Advanced Chemical Engineering主编, Asia-Pacific Journal of Chemical Engineering 副主编, International Journal of Photoenergy 客座主编和 Chin J. Catalysis 副主编。 同时兼多所大学的访问教授,。



报告题目2:

A Broad Talk on Energy Storage

(漫谈能量存储)

Dr Yuan Tian

School of Engineering and Technology, University of Hertfordshire, UK

y.tian5@herts.ac.uk


化石能源引起的二氧化碳排放和全球变暖等问题迫使人类去研究洁净的可再生能源,然而大多数可再生能源比如太阳能都是间断性的能源,要充分利用就必须依靠高效的储能技术。储能技术能使电网运行更加稳定可靠,也能提高能源利用效率,比如工业余热回收再利用、节能建筑中的昼热夜用和夏热冬用。该报告将漫谈主流的储能技术原理,包括热能存储(显热/潜热/化学热),压缩空气储能、抽水蓄能、电池、储氢、超导储能和超级电容器,报告人会结合自身研究方向浅谈一下多孔材料对热能存储和释放速率的增强研究

田原,33岁,陕西富平人,英国德蒙福特大学副教授。2006年本科毕业于澳门新永利国际网站热能与动力工程专业,2012年博士毕业于英国华威大学工程系,2012–2013年华威大学博士后,2013-2018年先后担任赫特福德大学和阿斯顿大学讲师(获终身教职)、博导和课程主任,2018年2月担任德蒙福特大学副教授。为英国高等教育协会Fellow,国际能源署储能组专家,英国储能智囊团科技委员会委员,英国EPSRC物理和工程科学研究基金会和智利科技部等多国科研项目评审员,延安大学兼职教授,西安交大英国校友会助理副会长和常任理事。常年从事新能源高效存储研究,近年来在大规模热能的高效存储(相变和热化学材料)、智能电网储能、节能环保建筑与低碳技术、余热利用,多孔介质内传热传质等方面取得一系列成果,发表学术论文和著书30篇/章,累计影响因子55+,被引用1800余次。其中一篇文章在 2014 年被 Applied Energy 杂志(影响因子:7.2)评为 The Most Downloaded Article。担任二十余家国际能源类学术杂志的编委或审稿人。主讲课程:新能源、流体力学、传热学和热力学等。



上一条:Henry Curran教授讲座通知 下一条:【2018小学期】范含林研究员讲座
XML 地图 | Sitemap 地图